Late Glacial-early Holocene vegetation and environmental changes in the western Iberian Central System inferred from a key site: The Navamuño record, Béjar range (Spain)

José Antonio López-Sáez a, *, Rosa M. Carrasco b, Valentín Turu b, c, Blanca Ruiz-Zapata d, María José Gil-García e, Reyes Luemlo-Lautenschlaeger a, Sebastián Pérez-Díaz e, Francisca Alba-Sánchez f, Daniel Abel-Schaaf d, Xavier Ros c, Javier Pedraza g

a Environmental Archaeology Research Group, Institute of History, CSIC, Albasanz 26-28, 28037, Madrid, Spain
b Department of Geological Engineering and Mining, University of Castilla-La Mancha, Avda. Carlos III s/n, 45071, Toledo, Spain
c Fundació Marcel Chevallier, Edifici Socio-Cultural de la Llacuna, AD500 Andorra la Vella, Andorra
d Department of Geology, Geography and Environment, University of Alcalá de Henares, 28871, Alcalá de Henares, Spain
e Department of Geography, Urban and Regional Planning, University of Cantabria, Avda. de los Castros s/n, 39005, Santander, Spain
f Department of Botany, University of Granada, 18071, Granada, Spain
g Department of Geodynamics, Stratigraphy and Paleontology, Complutense University, José Antonio Novais 12, 28040, Madrid, Spain

ARTICLE INFO

Article history:
Received 19 November 2019
Received in revised form 9 January 2020
Accepted 10 January 2020
Available online xxx

Keywords:
Late Glacial
Early Holocene
Palynology
Palaeoclimate
Iberian Central System

ABSTRACT

A new record from a long sediment core (S3) in Navamuño (1505 m asl, western Iberian Central System) provides the reconstruction of the vegetation history and environmental changes in the region between 15.6 and 10.6 ka cal BP, namely during the Late Glacial and the early Holocene, using a multiproxy analysis (pollen-based vegetation and climate reconstruction, sedimentary macrocharcoals, loss-on-ignition, magnetic susceptibility and X-ray fluorescence (XRF) measurements). The results are then compared with other sequences from the Iberian Central System and the whole Iberian Peninsula in order to better understand the past dynamics of the main forest constituents. The pollen record shows a shift from open pine forests ~15.6–14.7 ka cal BP (Oldest Dryas) to mixed open pine-birch woodlands ~14.7–14.0 ka cal BP (Bølling). Woodlands were succeeded by a steppe-like landscape until ~13.4 ka cal BP (Older Dryas), which was replaced again by high-mountain pine forests and riparian woodlands ~11.7–10.6 ka cal BP (Younger Dryas). The early Holocene (11.7–10.6 ka cal BP) was characterized by a progressive reforestation of the study area by pine and birch forests in the highlands and oak woods in the lowlands. Temperate tree taxa (Carpinus betulus, Castanea sativa, Corylus avellana, Fraxinus, Juglans, Tilia, and Ulmus) were also common but likely at lower elevations. Pollen of Fagus sylvatica was already recorded during the Late Glacial and the early Holocene. The marked increasing local fire activity during the warmer and wetter Allerød oscillation could be related to a rise in tree cover, supporting the climatically driven character of these fires. Nevertheless, the strong increase in fire activity during the Younger Dryas would probably be related to growing tree and shrub mortality, as well as to the wet/dry biphasic structure of this stadial. The standard “Modern Analogue Technique” has been also applied to the Navamuño sequence to provide quantitative climate estimations for the Late Glacial and the early Holocene periods. This record is one of the few continental archives that show the climatic trend between the Late Glacial and the early Holocene in central Iberia, agreeing with many other regional records from the Western Mediterranean.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Major climatic events during the late Pleistocene and the Holocene are well reconstructed and teleconnected in many parts of...
the planet, especially in Western Europe, using a multiproxy approach (Watts et al., 1996; Allen and Huntley, 2000; Roberts et al., 2004; Fletcher et al., 2010; Moreno et al., 2014; Beaulieu et al., 2017; Sadori, 2018). However, in the Iberian Peninsula the data on such globally related climatic events are still very limited (Carrión et al., 2010; González-Sampériz et al., 2010). This problem is particularly acute in the Iberian Central System (ICS), where systematic palaeoecological works are still few. Although our knowledge is growing, we still lack a coherent vision on patterns of change and climatic conditions in the central Iberian highlands during late Quaternary glacial-interglacial cycling and the corresponding response of vegetation.

Late Glacial is characterized by a number of relatively short and rapid climatic changes. It is considered to be the transition period between the cold and dry Pleniglacial and the warm and wetter Holocene, dated to approximately 20–11.7 ka cal BP (González-Sampériz et al., 2010; Domínguez-Villar et al., 2013). Climatic oscillations during the late Pleistocene and the Holocene led to massive range shifts and shaped the genetic structure and diversity of biota (Comes and Kaderie, 1998). Both phyleogeographic and palynological studies in Europe have confirmed the importance of the Iberian Peninsula as one of the main refuge areas for temperate flora during the Pleistocene glaciations (Hewitt, 1999, 2005) as well as a source for the post-Pleistocene colonization of northern latitudes (Taberlet et al., 1998; Benito-Garzón et al., 2007, 2008). This situation has been substantially different for cold-adapted plant species, which survived the glacial stages in mountain ranges or in peripheral refugia (Schonswetter et al., 2005). These species probably extended their distribution ranges during cold periods and became isolated at high altitudes and/or latitudes during warm interglacial or interstadial periods (Vargas, 2003). By contrast, high-mountain trees are equally likely to have survived in refugia in the southern European peninsulas (Birks and Willis, 2008) as for example the ICS (López-Sáez and López-García, 1994; López-Sáez et al., 2019), which becomes a great natural laboratory for studying the resilience of certain species to climate variability and human impact, but also for understanding why other cold-adapted forest species have become extinct in these mountains.

Thanks to the confluence of diverse climates and a rich topography, the western ICS (western Gredos or Béjar range) harbors some of the highest plant diversity found throughout Iberia, with a vascular flora of more than 1400 species, 200 of which are endemic to the Iberian Peninsula and 12 to these mountains (Luceno and Vargas, 1991). However, Gredos’ richness in endemism is lower than expected, likely related to the effect of cold Quaternary periods that were responsible for the extinction of numerous species (Vargas and García, 2008). The ICS is well characterized by Quaternary sediments of glacial-fluvial and lacustrine depositional environments, providing good natural archives for the multiproxy palaeoclimatic reconstructions of the late Pleistocene and early Holocene times (Pedraza, 1989, 1994; Domínguez-Villar et al., 2013). Nevertheless, apart from the western sector of the ICS (the Estrela range in Portugal), where the Late Glacial and the full Holocene are recorded in pollen sequences (van der Knaap and van Leeuwen, 1994, 1995, 1997), the rest of this mountain massif remains unpublished and no detailed high-resolution study of vegetation dynamics and climate evolution over the last 16 thousand years is known (Pontevedra et al., 2017). In order to compensate this lack of such records, several scientific projects have been aiming to systematically investigate key-sites from the western ICS, in order to establish an absolute chronology of the vegetation dynamics from the Late Glacial to the present day. Preliminary results reveal that the Gredos range appears to have acted as a refugium for coniferous and cold-adapted deciduous tree taxa (Alnus glutinosa, Betula alba, Pinus nigra, P. sylvestris), while small areas with suitable microclimate may have acted as micro-refugia for warm demanding temperate taxa such as Castanea sativa, Corylus avellana, Fraxinus excelsior, Juglans regia, Prunus lusitanica and Ulmus glabra (López-Sáez, 1993; Rubiales et al., 2007; López-Sáez et al., 2010b, 2014, 2017, 2019). These records also shed light on the Holocene patterns of tree species expansion with several acknowledged forest stages: i) dominance of Betula in the western sector (Béjar range) and the prevalence of pinewoods eastwards (central-eastern Gredos range) at the onset of the post-glacial; ii) expansion of Quercus sp. during the mid-early late Holocene. However, pollen records have also shown that past vegetation dynamics was not uniform in the western ICS as initially believed; differences exist in the timing of the expansion of several forest taxa (Gil-Romera et al., 2010b; Morales-Molino et al., 2013; Abel-Schaad et al., 2014; López-Sáez et al., 2014, 2019).

Palynological studies into Late Glacial and early Holocene vegetation history in the Iberian Peninsula are now numerous (Carrión et al., 2010; González-Sampériz et al., 2010), however would greatly benefit from higher temporal resolution and better chronological control. To contribute in filling this gap, we performed a multiproxy palaeoenvironmental study of a Late Glacial to early Holocene sedimentary section from a key site in the Béjar range, western ICS, the Navamuño (the Cuerd. Oi Mombo objective is the reconstruction of the local environmental history including vegetation, fire and climate dynamics, in an attempt to identify mechanisms of past high-mountain ecosystem change during the Late Glacial and the early Holocene. It also sets to determine whether there are leads or lags in the establishment and expansion of main forest taxa, as compared to other regions from central Iberia.

2. Regional setting

The study area is located in the western part of the ICS (Fig. 1), the so-called Béjar range (western Gredos range). This range is a granitic massif structured in the form of a block-mountain and limited by two large morphotectonic depressions. This network in combination with the E-W network, dominate the general morphostructure of the relief, the outline of the current drainage network and the main valleys of glacial origin (Carrasco, 1997). This NE-SW mountain range corresponds to an intraplate mountain structured in fault blocks and formed during the Alpine orogeny due to the tectonic reactivation of an ancient massif (the Hercynian or Variscan basement) (Casas-Sainz and de Vicente, 2009). The current morphostructure forms a piedmont stairway (piedmont-treppen), and the summit areas have altitudes of between 1700 and 2400 m asl (Pedraza, 1989, 1994). This morphology was a major factor in the development of glaciers in some of the summits of the Béjar range during the late Pleistocene. Its paleoglaciers are among the most important of the ICS, usually classified as valley cirque glaciers, although they have recently been reclassified as plateau glaciers (Carrasco et al., 2013). The predominant lithologies are granitoids; although migmatises, metasediments and quartzitic schists are also present (GEODE, 2004).

The Navamuño peat bog (40°19′16.80″N, 5°46′42.83″W) lies at 1505 m asl and was chosen because of its big catchment and its remote position far from the valleys in the north and south of the Béjar range which are more strongly impacted by human activities. It corresponds to a "nuevo-type" bucket located at the head of the Cuerpo de Hombre valley that is confined laterally by both glacial (moraines) and morpho-structural elements (escarpments) (Fig. 1) (Carrasco et al., 2015a, 2015b). The Cuerpo de Hombre paleoglaciers occupies the upper sector of the Cuerpo de Hombre river basin, located on the northwest slope of the Béjar range. The peat bog has an area of ca. 14 ha with a sediment thickness greater than 20 m (Carrasco et al., 2018; Turu et al., 2018) and is therefore likely to
record both local and regional vegetation changes in the past. During the last glacial period, in the Cuerpo de Hombre valley, one of the largest glacial tongues (~6 km²) in central Iberia developed, which formed part of the glacial plateau of the Bejar range (Carrasco et al., 2013). The chronological data obtained in the boulders of moraines by 10Be indicate an age of ~25.0 ka cal BP for the maximum ice extent of Cuerpo de Hombre paleoglaciers (Carrasco et al., 2015a). This chronology coincides with dates obtained for other paleoglaciers in the ICS, but is slightly more modern than the regional chronology estimated as most likely for the maximum ice extent in these areas (Palacios et al., 2011; Domínguez-Villar et al., 2013). Subsequent to reaching the maximum extent, the glacier had a first retreat (minimum age ~20.6 ka cal BP), followed by another stage of expansion or re-advance, after which it stabilised until the start of the deglaciation stage ~17.8 ka cal BP (Pedraza et al., 2013).

From a phytogeographical point of view, the peat bog is located in the Bejaran-Gredensean sector of the Carpetan-Leonese subprovince of the Mediterranean West Iberian province of the Mediterranean region (Rivas-Martínez, 2007). The local vegetation type is assigned to the Caricetum echinato-nigrae and Calluno vulgaris-Sphagnetum capillifolii plant communities (Sardinero, 2004). The peat bog vegetation is mainly composed of Carex echinata, C. nigra, C. demissa, Sphagnum sp., Drosera rotundifolia, Calluna vulgaris, Potentilla erecta, Agrostis canina, Nardus stricta, Viola palustris, Eleocharis quinqueflora, Epilobium palustre, and Gentiana boryi. The specific vegetation stage for this altitude (1505 m asl) is typically characterized by the Cytiso oromediterranei-Genistetum cinerascentis plant community and for higher altitudes (above 1750 m asl) by the Cytiso oromediterranei-Echinopsartetum pulviniformis plant community (Sardinero, 2004). The first corresponds to broom communities from the upper supremediterranean humid belt dominated by Cytisus oromediterraneus, C. scoparius, Genista cinerascens, Festuca elegans subsp. merinai, F. gredensis, Pteridium aquilinum, and, to a minor extent, Erica australis subsp. aragonensis. These broom communities represent serial stages of the Quercus pyrenaica forests that disappeared in the study area due to the systematic burning that the territory has suffered in the last two centuries. The second one represents orotemperate submediterranean (orosubmediterranean) hyperhumid broom communities from the oromediterranean belt dominated by Cytisus oromediterraneus, Echinopsartum ibericum subsp. pulviniformis and Juniperus communis subsp. alpina. At lower altitudes (900–1300 m asl) subhumid supremediterranean oak forests of Quercus pyrenaica (Festuco merinai-Quercetum pyrenaicae) dominate the landscape. Planted Pinus sylvestris woods grow within them. Castanea sativa and Juglans regia grow up to an elevation of 1000 m asl on sunny southern slopes. These forests connect at lower altitudes to the south with the upper mesomediterranean oak forests (Arbuto unedonis-Quercetum pyrenaicae), characterized by the presence of Arbutus unedo (López-Sáez et al., 2015), and lower mesomediterranean evergreen oak woodlands (Pyro bourgaeanae-Quercetum rotundifoliiæ community) dominated by Quercus ilex subsp. rotundifolia. Alnus glutinosa, Salix atrocrenerea and Sorbus aucuparia make mainly up the riparian woodlands.

The climate is of a Mediterranean type, with a summer drought
period and more intense rainfall in autumn and winter, although it is influenced by Atlantic depressions from the southwest and the Azores anticyclone. Average annual rainfall on the Béjar mountains ranges between 800 and 1000 mm, reaching about 2000 mm at the summits, while temperature varies between −4 and 3 °C during winter and 22 and 32 °C during summer; mean annual temperature is 9.5 °C (Sardineró, 2004; Fick and Hijmans, 2017).

3. Material and methods

3.1. Core sampling, lithology and chronology

A 1586 cm-long sediment core (S3) was recovered from the central-north area of the Navamuño depression in 2015 (Fig. 1) using a modified squared-rod piston corer. Below these levels a layer rich in kaolinite (1600–1586 cm) was documented, but is not considered in this study. Core description and sampling procedures are described in Turu et al. (2018). At the Department of Geodynamics, Stratigraphy and Palaeontology, Complutense University, Spain the core was split lengthwise, photographed and described lithologically (Table 1) and then stored in darkness at 4 °C. Two palynological hiatuses were documented at 593–567 cm (~8.9 ka cal BP) and 706–605 cm (~10.6 ka cal BP) coinciding with a lithostratigraphic coarse sand with gravels and pebbles. Probably, such sedimentological characteristics provoked abrasive processes that destroyed the sporopollinic content (Carrion et al., 2009). This study uses the core section from 1586 to 707 cm depth below the lower hiatus, which corresponds only to the Late Glacial-early Holocene sediments, whose stratigraphy is represented in Fig. 2. Five organic sediment samples were selected for 14C dating in the lower hiatus, which corresponds only to the Late Glacial-early Holocene, ~15.6 to ~10.6 ka cal BP, providing nearly decadal resolution (5.63 yr/cm). Palynomorphs were identified and counted. Pollen of Plantago alpina, Plantago maritima, and Plantago subulata was discriminated according to Renault-Miskovsky et al. (1976); Plan-tago coronopus-type is named after Ubera et al. (1988) and includes Plantago maritima, Plantago alpina and Plantago subulata. Non-pollen palynomorphs (NPPs) were identified in parallel to pollen counting using available literature (van Geel, 2001; Carrion et al., 2010b). Pollen counts of up to 400 grains total land pollen (trees, shrubs, herbs) per sample were identified and counted. Pollen of aquatic or wetland plants as well as spores and non-pollen components in the palaeolake system through time (López et al., 2006; Schröder et al., 2018). Therefore, Al and Ti can be used as efficient indicators of transportation energy changes by their different elementary gravity. Ti is a detrital sediment indicator in our record because it is only produced allogenically through the physical erosion of Ti-bearing rocks (Cohen, 2003), and mineral containing Ti are not sensitive to dissolution (Demory et al., 2005). Mn and Fe are sensitive to geochemical changes in the depositional environment so that the Mn/Fe ratio is often used as a proxy for paleo-redox conditions (Koing et al., 2003). Mn is highly insoluble in the water column in oxygenated conditions and consequently elevated Mn/Fe ratio depicts an oxygen-rich environment, whereas low Mn/Fe ratios reflect more oxygen-depleted conditions at the water/sediment interface.

3.3. Loss-on-ignition, magnetic susceptibility and sedimentary macrocharcoal analysis

The organic matter content of the sediment (1 cm³) was determined for consecutive 5-cm sub-samples by loss-on-ignition (LOI) following sequential heating at 550 °C for 4 h and 950 °C for 1 h (Heiri et al., 2001). LOI is expressed as a percentage of weight loss in dried sediment. Before other analyses were made, magnetic susceptibility (MS) was measured at a resolution of 6 ± 1 cm using a pocket-sized GI Instrument SM-20 magnetic susceptibility meter to reveal environmental changes recorded in the sediment. Measurements were reported in SI units. The sediment macrocharcoal count was performed with the sieving method (Carcailliet et al., 2001) with a 150 μm mesh size in order to reconstruct local fire history, calculating the area using an ocular micrometer with a graticule of 10 × 10 squares each with an area of 0.0625 mm². To minimize the effects of the different sample densities, the choice was made to work with weight (~1 g) rather than volume (Carcailliet et al., 2007). The samples were weighed and then heated at 70 °C for 90 min, adding two tablets of defloculant solution of KOH and 20 ml of NaOH (15%) to each sample to eliminate organic matter and respectively bleach the samples (Finsinger et al., 2014). Charcoal concentration was expressed in mm³/g.

3.4. Pollen analysis

Pollen analysis was carried out on 115 sub-samples of 1 cm³ volume along the lower 879 cm of the core (1586–707 cm) at ~5 cm intervals using the standard acid-alkali method of Moore et al. (1991). The core had a particularly good resolution for the Late Glacial-early Holocene, −15.6 to −10.6 ka cal BP, providing nearly decadal resolution (5.63 yr/cm). Palynomorphs were identified at 400x and 1000x magnification to the lowest taxonomic level possible. Identifications were based on the European and North African Atlas (Reille, 1999), and the pollen reference collection at the Institute of History (CSIC-Madrid). Oleaceae pollen types were discriminated according to Renault-Miskovsky et al. (1976); Pinus pinaster and Erica australis pollen differentiation followed Mateus (1989), Carrion et al. (2000) and Lopez-Saez et al. (2010b). Plan-tago coronopus-type is named after Ubera et al. (1988) and includes Plantago maritima, Plantago alpina and Plantago subulata. Non-pollen palynomorphs (NPPs) were identified in parallel to pollen counting using available literature (van Geel, 2001; Carrion and Navarro, 2002; Cugny et al., 2010). NPP nomenclature follows current common rules (Möia, 2012) with the abbreviations Hdv-xxx (Hugo-de-Vries Laboratory, University of Amsterdam, Amsterdam, The Netherlands), for the according laboratory that described them first. Pollen counts of up to 400 grains total land pollen (trees, shrubs, herbs) per sample were identified and counted. Pollen of aquatic or wetland plants as well as spores and non-pollen

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>Stratigraphic description</th>
</tr>
</thead>
<tbody>
<tr>
<td>707–753</td>
<td>Coarse sand and gravels with pebbles</td>
</tr>
<tr>
<td>753–758</td>
<td>Light-umber-coloured silty sand</td>
</tr>
<tr>
<td>758–803</td>
<td>Dark brown silt</td>
</tr>
<tr>
<td>803–1330</td>
<td>Coarse sand</td>
</tr>
<tr>
<td>1330–1400</td>
<td>Medium sand with dark brown silt</td>
</tr>
<tr>
<td>1400–1420</td>
<td>Dark green silty clay</td>
</tr>
<tr>
<td>1420–1495</td>
<td>Dark brown silty clay</td>
</tr>
<tr>
<td>1495–1542</td>
<td>Dark green silty clay</td>
</tr>
<tr>
<td>1542–1576</td>
<td>Dark-greenish/greyish-brown clayey silt</td>
</tr>
<tr>
<td>1576–1586</td>
<td>Greenish/greyish clay</td>
</tr>
</tbody>
</table>
palynomorphs (NPPs) were excluded from the pollen sum and their percentages were calculated relative to the total land pollen sum of all terrestrial taxa taken as 100%. Interpretation of the pollen percentage data was based on a comparison with modern pollen data from the ICS (López-Sáez et al., 2010a, 2013, 2015). To establish the zonation of the pollen sequence, we tested several divisive and agglomerative methods with the program IBM SPSS Statistics 21. Based on the ecological meaning of the obtained zones, four local pollen assemblage zones (LPAZ-1 to LPAZ-4) were constructed on the basis of agglomerative constrained cluster analysis of incremental sum of squares (Coniss) with square root transformed percentage data (Grimm, 1987). The number of statistically significant zones was determined by using the broken-stick model (Bennett, 1996). A total of 87 pollen, spore, and non-pollen palynomorph types were identified. The results of the identification and counting are presented as percentage diagrams (Figs. 3–5). The pollen diagrams have been plotted against age, using TGview (Grimm, 2004). The terms ‘local’ (0–20 m), ‘extra-local’ (20 m–2 km), and ‘regional’ (>2 km) used in the text refer to different pollen source areas according to Prentice (1985).

3.5. Pollen-based palaeoclimate reconstruction

Quantitative estimates of mean annual temperature (Tann) and total annual precipitation (Pann) during the Late Glacial and the early Holocene are inferred from Navamu pollen data with the Modern Analogue Technique (MAT) (Guiot, 1990; Peyron et al., 2005). In the MAT method, the similarity between each fossil sample and modern pollen assemblage is evaluated by a squared chord distance (Birks et al., 2010). Estimates of past climatic parameters are obtained by taking a weighted average of the values for all selected best modern analogues, where the weights used are the inverse of the chord distance. To reduce uncertainties, we have used only the modern pollen rain database of the Iberian Peninsula (Davis et al., 2013). To improve the climate reconstruction, in particular to reduce the potential effect of spatial autocorrelation (Telford and Birks, 2005), we have updated the modern pollen dataset using 1147 surface samples distributed along a large precipitation and temperature gradient and a wide variety of ecosystems throughout the Iberian Peninsula. The MAT model was developed using C2 1.7.4 software (Juggins, 2007) and the WorldClim version 2 (Fick and Hijmans, 2017) for climate variables (~1 km² of spatial resolution). We chose the model with the smallest root mean squared error of prediction (RMSEP) value and largest high coefficient of determination between predicted and observed values (R²). Two-component models for reconstruction were selected for Tann (R² = 0.86, RMSEP = 1.19) and Pann (R² = 0.79, RMSEP = 94.78). The current average climatic values obtained for the study area via Worldclim database were Tann (8.8 °C) and Pann (726 mm), respectively. The latter are taken as

Table 2
AMS and calibrated ¹⁴C ages for the S3 core sequence from the western Gredos range, Iberian Central System, Spain.

<table>
<thead>
<tr>
<th>Lab code</th>
<th>Depth (cm)</th>
<th>Material dated</th>
<th>¹⁴C Age BP ±</th>
<th>Calibrated range (cal BP)</th>
<th>Median probability (cal BP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>β-410,000</td>
<td>700</td>
<td>Cyperaceae seeds</td>
<td>9450 ± 30</td>
<td>10,754–10587</td>
<td>10,686</td>
</tr>
<tr>
<td>β-410,001</td>
<td>785</td>
<td>Cyperaceae seeds</td>
<td>9530 ± 30</td>
<td>11,072–10707</td>
<td>10,868</td>
</tr>
<tr>
<td>β-410,003</td>
<td>1330</td>
<td>Bulk</td>
<td>9980 ± 40</td>
<td>11,619–11264</td>
<td>11,426</td>
</tr>
<tr>
<td>β-410,004</td>
<td>1550</td>
<td>Cyperaceae seeds</td>
<td>11,920 ± 40</td>
<td>13,942–13568</td>
<td>13,744</td>
</tr>
<tr>
<td>β-412,870</td>
<td>1600</td>
<td>Bulk</td>
<td>13,720 ± 40</td>
<td>16,800–16339</td>
<td>16,561</td>
</tr>
</tbody>
</table>
reference data for the estimated climatic values (Pann and Tann) throughout the pollen sequence.

4. Results

The sedimentary profile of the Navamuño sequence is certainly complex (Fig. 2), as it has different levels of clay, silt, clayey silt, silty clay, silty sand as well as other of sand of different texture including some with gravel and pebbles (753-707 cm). Between 1330 and 803 cm the sedimentary record shows a remarkable layer of almost 5 m characterized by containing almost exclusively coarse sands. A simplified stratigraphy of the sequence (1586-707 cm cm) is presented in Table 1 and also given in Fig. 2. S3 core spans the last 15.6 ka cal BP years (Table 2). All radiocarbon dates appear in stratigraphical order. The series of five AMS dates shows a consistent age-depth model (Fig. 2), which possibly indicates that there is no presence of hiatus. The core shows a low sedimentation rate (~0.23–0.76 mm yr\(^{-1}\)) between the bottom of the core (1586 cm)

![Fig. 3. Percentage pollen diagram of the S3 core (woodland vegetation) plotted against age (cal BP). The black silhouettes show the percentage curves of the taxa, the grey silhouettes show the ×5 exaggeration curves.](image1)

![Fig. 4. Percentage pollen diagram of the S3 core (herbs) plotted against age (cal BP). The black silhouettes show the percentage curves of the taxa, the grey silhouettes show the ×5 exaggeration curves.](image2)
and 1330 cm depth, and higher values (~14.89 mm yr\(^{-1}\)) between 1330 and 785 cm, and finally sedimentation rate stabilizes (~2.19 mm yr\(^{-1}\)) between 785 and 707 cm (Fig. 2).

The size of the sedimentary basin is ~14 ha therefore the pollen assemblages are representative of vegetation composition of a relatively large kilometers radius, i.e. both locally and regionally (Sugita, 1994; Gaillard et al., 2008). For the Navamu—no sequence, 115 pollen spectra were analyzed and 85 taxa were identified. To facilitate description and interpretation of the pollen diagrams with respect to vegetational changes, 4 Local Pollen Assemblage Zones (LPAZs 1–4) were established, although LPAZ-2 and LPAZ-3 contain 3 and 2 sub-zones each, respectively (Table 3; Figs. 3–5). The main vegetation development is highlighted in Table 3.

A synthetic diagram including selected ecological groups, macrocharcoal abundance, LOI, MS, Al/Ti and Mn/Fe ratios, the reconstructed values of annual average temperature (Tann) and total annual precipitation (Pann) using the MAT technique, and d\(^{18}\)O record from NGRIP record (Rasmussen et al., 2008) plotted against age (cal BP) is shown in Fig. 6. Macrocharcoal particles are practically absent ~15.6–14.7 ka cal BP (1586–1500 cm), except ~14.3–13.8 ka cal BP (1552–1538 cm), where macrocharcoal area reaches 0.2–0.3 mm\(^2\)/g (Fig. 6). The period ~12.9–11.3 ka cal BP is characterized by rapid accumulation of macrocharcoal, with maxima values (1.6–2.2 mm\(^2\)/g) between 11.5 and 11.4 ka cal BP. Subsequently, a new maximum is documented ~10.9 ka cal BP (0.8 mm\(^2\)/g). Total organic matter content in the Navamu—no S3 core, as approximated by the LOI (Fig. 6), shows great variability throughout the sequence. Although their values are not very high there are four characteristic phases with a higher average (>20%) content: 779 cm, 1340 cm, 1379 cm, and 1458 cm. Two high positive MS peaks (>0.6 × 10\(^3\) SI units) coincide with sand layers (Table 1) ~11.37 ka cal BP (1350 cm) and 11.05 ka cal BP (839 cm), respectively (Fig. 6).

5. Discussion and regional comparison

The Navamuño record starts ~15.6 ka cal BP and spans the entire Late Glacial and early Holocene periods until ~10.6 ka cal BP. The pollen, macrocharcoal, LOI, MS and geochemical records from Navamuño indicate that major changes occurred in the lacustrine landscape, involving the forest/shrub cover and the herbaceous vegetation, as well as the submerged and floating plant coenoses. These changes are discussed in relation to: i) the regional development of vegetation in the Iberian Peninsula; ii) the evolution of the lacustrine environment; iii) the main climate fluctuations recorded by the proxy NGRIP d\(^{18}\)O curve at the late Pleistocene–early Holocene transition (Fig. 6).

5.1. Oldest Dryas stadial (~15.6–14.7 ka cal BP)

The basal pollen zone (LPAZ-1; 1586–1557 cm; ~15.6–14.5 ka cal BP) shows the highest percentages of herbs (50–62%), mainly represented by cryoxerophytic taxa (Artemisia, Chenopodiaceae, Ephedra distachya) and heliophilous/cryophilous herbs (Poaceae, Aster, Fumaria officinalis, Plantago coronopus), probably indicating cold and dry conditions (Figs. 3, 4 and 6). This pollen assemblage points to a great development of open vegetation on the surrounding landscape. Other herb pollen types (Fig. 4) having limited dispersal capacities and possibly derived from plants growing near the S3 core include plants typical of open, sandy soils (Caryophyllaceae, Campanula, Cichorioideae, Geranium, Rubiaceae, Rumex acetosella). The arboreal pollen sum (33–52%) is mainly made up of abundant pollen—producing cold-adapted tree taxa such as Pinus sylvestris/nigra, Betula, Alnus and Salix, indicating the presence of open pine forests and sparse riparian woodlands in the proximity of the Navamuño depression (Figs. 3 and 6). Juniperus and Cytisus/Genista pollen are continuously present at values ~1%. Both pollen taxa produce large quantities of pollen, but low amounts of pollen are usually found in mountain fossil records (Markgraf, 1980). Similar peaks in Juniperus and Cytisus/Genista pollen are
Table 3
Summary of the pollen stratigraphy, chronology and vegetation history of Navamu peat bog (see Figs. 3–6 for pollen diagrams).

<table>
<thead>
<tr>
<th>LPAZ</th>
<th>Depth (cm)</th>
<th>Age ka cal BP</th>
<th>Description</th>
<th>Inferred local upland vegetation</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPAZ-1586</td>
<td>15.6</td>
<td>1557–14.5</td>
<td>This zone is marked by the presence of cold-adapted trees. Among them, Pinus sylvestris/nigra (28–49%) is the dominant taxon. There is also a continuous curve of Alnus, Betula and Salix (<4%). Carpinus betulus percentages reach 0.3% and Fagus 0.5%. Temperate taxa (Castanea, Juglans, Ulmus) are also present with very low percentages (<1%). Juniperus was found in amounts higher than 1%, while Cytisus/ Echinospartum reaches ~1%. Cryophytochoryphic herbs (Artemisia 11–22%, Chenopodiaceae 3–10%) and heliophylo/cryophilous herbs (Poaceae 7–29%, Aster 2–5) are well represented. Scent presence of local hydrophytic taxa (<3%). In the upper part of the zone (~14.7–14.5 ka cal BP) there is an increase in NPPs indicators of oligotrophic open water conditions (HdV-120, HdV-170) suggesting an increase in rainfall, while the lower part is characterized by the increase of HdV-60 suggesting oligo-mesotrophic wet open water conditions. Relatively low values (<1%) of coprophilous fungi (HdV-55A, HdV-113, HdV-172, and HdV-368) were present during this zone.</td>
<td></td>
</tr>
<tr>
<td>LPAZ-1557</td>
<td>14.5</td>
<td>1542–14.0</td>
<td>One of the major characteristics of this sub-zone is the decrease of Pinus sylvestris/nigra (23–38%), with the replacement mainly by Betula (11–23%), Alnus (<2%) and Salix. Pollen of Corylus, Castanea, Fagus, Fraxinus, Betula and Olea was also present. Carpinus betulus disappears, while both evergreen and deciduous Quercus increase. Juniperus and Cytisus/Genista remain at low percentages and Lonicera (1%) slightly increases. This sub-zone comprises a phase with a marked decline of cryophytochoryphic taxa (*Artemisia 7–14%, Chenopodiaceae 1–4%). Heliophylo/cryophilous herbs increase at the beginning of the sub-zone and decrease drastically afterwards (*Poaceae 20 to 10%, Plantago coronopus 3 to 1%). Hydro-hygrophytic taxa (Myriophyllum – 3%) and NPPs indicators of oligotrophic open water conditions (HdV-120, HdV-170–3%) as well as Zygmenetaceae spores (HdV-313, HdV-314, HdV-315) slightly increase.</td>
<td></td>
</tr>
<tr>
<td>LPAZ-1542</td>
<td>14.0</td>
<td>1520–13.4</td>
<td>This sub-zone has a number of characteristics including: a) a temporary decrease of Betula (below 20%), Salix, evergreen Quercus and Juniperus; b) a slight increase of Pinus sylvestris/nigra (up to 23%), Alnus, Castanea, J uncipers and Cytisus/Genista; c) Fagus disappears; d) a notably increase of cryophytochoryphic taxa (*Artemisia up to 10% and heliophylo/cryophilous herbs (mainly represented by Poaceae, Aster and Fumaria officinalis); e) disappearance of certain hydro-hygrophytic taxa (Epilobium, Myriophyllum, Nymphaea, Ranunculaceae, Typha sp.) but others increase (Alisma, Polygonum amphibium). Throughout the sub-zone, there are continuous occurrences of HdV-120 while HdV-60, HdV-170, HdV-313, HdV-314, HdV-315, while coprophilous fungi (HdV-55A, HdV-113, and HdV-368) decrease.</td>
<td></td>
</tr>
<tr>
<td>LPAZ-1520</td>
<td>13.4</td>
<td>1500–12.5</td>
<td>There is a marked increase in Betula (32%), Juglans, Salix, Cistus and Fagus). The percentages of Pinus sylvestris/nigra fluctuate between 19 and 37%, while those of Artemisia fluctuate between 4 and 13%. A significant characteristic is the general decline and even disappearance of many hygrophylo and hydrophytic herbs, such as Alisma, Polygonum amphibium, Cyperaceae, etc. especially at the end of the sub-zone. The regular occurrence of HdV-170 in the first half of the sub-zone, suggests oligotrophic open water conditions, while the predominance of HdV-120, HdV-174, HdV-313, HdV-314 and HdV-315 in the second half of the sub-zone suggests a change in trophic conditions towards meso-euthrophic wet/open water conditions. Increasing values of coprophilous fungi (HdV-55A, HdV-113, and HdV-368) were present during this sub-zone. The presence of *Clamens would be indicative of erosive processes.</td>
<td></td>
</tr>
<tr>
<td>LPAZ-1500</td>
<td>12.9</td>
<td>1420–11.7</td>
<td>The pollen spectra are dominated by Pinus sylvestris/nigra (26–63%) and Betula (11–33%) at high altitudes although following antagonistic curves, and Quercus species, Corylus and Fagus at lower altitudes, Juniperus and Cytisus/Genista pollen occur regularly. The cryophytochoryphic taxa (Artemisia, Chenopodiaceae, Ephedra distachya) and the heliophylo/cryophilous herbs (Poaceae, Aster, Plantago coronopus) show a continuous curve with alternating maximum and minimum percentages, as well as hydrophytic ones. Within NPPs, only HdV-120 and HdV-170 are present at the bottom of the zone.</td>
<td></td>
</tr>
<tr>
<td>LPAZ-1420</td>
<td>11.7</td>
<td>1375–11.45</td>
<td>This zone is characterized by the increase of Pinus sylvestris/nigra (>50%), Cytisus/Genista and Junipers, and by the notably reduction of Betula (<3%), Corylus, Fagus sylvatica and both evergreen and deciduous Quercus. The regular occurrence of cryophytochoryphic taxa (Artemisia, Chenopodiaceae, Ephedra distachya) and heliophylo/cryophilous taxa (Poaceae, Aster, Plantago coronopus), as well as the general decline of hydro-hygrophytic herbs suggests dry conditions. However, the presence of forest dominated by Pinus sylvestris/nigra with broom communities and crawling junipers. Presence of riparian woodlands (Alnus, Betula, Salix). Establishment of Carpinus betulus and Fagus sylvatica. The abundance of cryophylo and xerophylo herbs suggests cold and dry conditions, while since 14.7 ka cal BP rainfall seems to increase according to the percentage increase of NPPs indicators of oligotrophic open water conditions. The low percentage values of coprophilous fungi would indicate the absence of wild animals in the environment of the vegetation. Strong decline of beech woodlands. Development of oak woodlands at lower altitudes. Forest dominated by Pinus sylvestris/nigra with broom communities and crawling junipers. Open areas dominated by steppe-like vegetation. The Navamu depression was occupied by a floodplain. NPPs are not recorded.</td>
<td></td>
</tr>
</tbody>
</table>
also seen in other records from central and northern Iberia during this period (van der Knaap and van Leeuwen, 1997; González-Samperíz et al., 2006, 2010), as well as from central and southern Italy (Watts et al., 1996; Drescher-Schneider et al., 2007; Sadori, 2018), suggesting the development of high-mountain bryophyte communities and crawling junipers within the open pine woodlands (López-Sáez et al., 2013; Broothaerts et al., 2018). Low percentages of temperate taxa (Carpinus betulus, Castanea, Juglans, and Ulmus) suggest that small populations of these trees were established regionally, probably in the lowlands in particular humid shelters of the Gredos range or confined to river banks (López-Sáez, 1993; López-Sáez and López-García, 1994; Abel-Schaad et al., 2014; López-Sáez et al., 2017). Fagus sylvatica is also recorded sporadically with very low percentages (<0.2%; Fig. 3) suggesting and confirming its regional presence in the mountains of western Gredos (Huntley, 1990; van der Knaap et al., 2005; Abel-Schaad et al., 2014). This finding represents the first record of beech from the Late Glacial in the ICS. Hornbeam (Carpinus betulus) has been regularly documented in Iberian pollen records during the middle and late Pleistocene (Postigo-Mijarra et al., 2008, 2010; Magri et al., 2017). Nevertheless, its presence in the Navamuño sequence ~15.6–14.5 ka cal BP is the oldest record ever recorded in the ICs, where it had only been cited from the early Holocene onwards (Atienza, 1995; Atienza et al., 1996; Abel-Schaad et al., 2014). Our data allow us to suggest the existence of Late Glacial refugia for both hornbeam and beech in the western Gredos range.

Low pollen percentages for wetland indicators, particularly of hydrophytic taxa (Figs. 5–6), are also indicative of cold and dry conditions. Between 15.6 and 14.5 ka cal BP the lithotype consists of greenish or greyish clay and clayey silt (Fig. 2; Table 1) with minimal sedimentation rate (0.23 mm yr−1; Fig. 2), characteristic of a glacilacustrine depositional environment of an amictic lake (Turu et al., 2018). This is in accordance with low MS SI units and the geochemical data (Fig. 6), which show that the main sedimentary contribution was produced by suspension, as indicated by high Al/Ti ratio (Höögib et al., 2012). Thus, relative high lake levels during the Oldest Dryas coincide with a high influence of lithogenic elements like aluminium and iron due to enhanced soil erosion related to deglaciation and with low Mn/Fe ratio (Martín-Puertas et al., 2011). Cold conditions during this period can also be inferred from the very low content (Fig. 6) of organic matter (LOI), indicative of lower organic productivity in the palaeolake (González-Samperíz et al., 2006). Similar conditions have been documented in glacial lakes of the Pyrenees, the Cantabrian Mountains and in the Serra da Estrela at the westernmost end of the ICS during the Oldest Dryas (van der Knaap and van Leeuwen, 1997; González-Samperíz et al., 2006; Jalut et al., 2010; Oliva-Urcía et al., 2018). The presence of Closterium idiosporum (Hvd-60) at this time would be indicative of oligo-mesotrophic open cold water conditions (van Geel, 1978; Carrió and Navarro, 2002), probably related to marked detrital inputs or to the contribution of dung from wild animals to the sedimentary basin (Carrió and Navarro, 2002; Cugny et al., 2010). In fact, low values of coprophilous fungi are also documented in LPAZ-1 (Fig. 5).

The chronology of LPAZ-1, with the exception of the upper part ~14.7–14.5 ka cal BP, is synchronous with the onset of the Oldest Dryas (Greenland Stadial 2a/GS-2a) in the Iberian mountains between 16.6 and 14.7 ka cal BP (Jalut et al., 2010; Domínguez-Villar et al., 2013; Palacios et al., 2016), a cold and dry interval documented in the Northern Hemisphere caused by the collapse of the North Atlantic Deep Water formation (Denton et al., 2006). This period has been also recorded in Greenland ice cores (Fig. 6) by very low δ18O values (Rasmussen et al., 2008). The Oldest Dryas vegetation in the whole of Europe was dominated by herbs with abundant Artemisia and Poaceae as well as scrublands with Juniperus and open woodlands with Pinus and Betula trees (Watts et al., 1996; Giesecke et al., 2017; Sadori, 2018). This plant landscape is also documented in this period in pollen records of northern and southern mountains of the Iberian Peninsula, indicating cold and dry conditions with Artemisia and Pinus-Juniperus woods as dominant at a regional scale, but with deciduous trees in all locations (Carrió, 2002; González-Samperíz et al., 2010 and references therein; López-Merino et al., 2012; Iriarte-Chiapusso et al., 2016). At the Serra da Estrela (western ICS, Portugal), the Charco da Candieira record (1400 m asl) also shows a sedimentary sequence of soft inorganic silt ~14.8–14.7 ka cal BP, as well as a landscape dominated by herbaceous formations (Artemisia, Poaceae, Plantago radicata, Chenopodiaceae) and scarce trees (mainly Pinus and Betula), completely similar to the one described in this period in Navamuño (van der Knaap and van Leeuwen, 1995, 1997).

At Navamuño, palaeoclimatic reconstruction (Fig. 6) suggests that during the Oldest Dryas the mean annual temperature (Tann) was lower than today (1.5–3 °C less). Further, the inferred total annual precipitation (Pann) indicates that climatic conditions were similar to the present ones. The few existing climate reconstructions concerning the Oldest Dryas for the whole of the Iberian Peninsula (Tarroso et al., 2016) indicate slightly cooler and drier conditions than in our reconstruction. So cold and dry

Table 3 (continued)

<table>
<thead>
<tr>
<th>LPAZ</th>
<th>Depth (cm)</th>
<th>Age ka cal BP</th>
<th>Description</th>
<th>Inferred local upland vegetation</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPAZ-1</td>
<td>1375</td>
<td>11.45</td>
<td>This zone is characterized by higher percentage values of Betula (>20%) and Alnus and a declining trend of Pinus sylvestris/nigra, although pine and birch generally follow antagonistic trends. High-altitude shrublands are dominated by Cyttisus/Cistus and Junipers, as well as by Erica australis from 11.3 ka cal BP. Fagus sylvatica is only present at the bottom, while Juglans has a more or less continuous curve. Evergreen and deciduous oak woodlands develop at lower altitudes. The cryo-xerophytic taxa (Artemisia, Chenopodiaceae, Ephedra distachya) and the heliophilous/cryptophytic herbs (Poaceae, Aster, Plantago coronopus) show higher values at the bottom of the zone, while most hydro-hydrophytic taxa (Cyperaceae, Potentilla, Viola palustris, Alisma) increase their percentages at the top of the zone. Within NPPs, local dry conditions indicators (HdV-3β, HdV-10, HdV-16A, HdV-20, and HdV-63) are more abundant at the bottom of the zone, while oligo-mesotrophic open water conditions indicators (HdV-170) predominate at the top. Progressively higher values of Quercus pyrenaica and Q. ilex.</td>
<td>11.45–11.3 ka cal BP: Open mixed woodland dominated by Betula and Pinus sylvestris/nigra with broom communities, crawling junipers and heaths. Regional development of temperate elements such as beech and walnut. The abundance of cryophilous and xerophytic taxa, as well as NPPs indicators of local dry conditions, suggests a cold, dry climate. 11.3–10.6 ka cal BP: Open mixed woodland dominated by Quercus pyrenaica, Betula and Pinus sylvestris/nigra with broom communities, crawling junipers and heaths. Fagus sylvatica disappears. Lower cryophilous and xerophytic taxa values and higher hydro-hydrophytic taxa values suggest warmer and wetter conditions. Presence of an alluvial plain with oligo-mesotrophic open water conditions.</td>
</tr>
</tbody>
</table>
Fig. 6. Selected pollen ecological groups, macrocharcoals, organic matter content (LOI), magnetic susceptibility (MS), selected geochemical ratios, reconstructed Pann (total annual precipitation) and Tann (mean annual temperature) values of Navamu sequence, and δ¹⁸O record from NGRIP record (Rasmussen et al., 2008) plotted against age (ka cal BP). Current average climatic values (Pann and Tann) via WorldClim (dotted line) are taken as reference data for the estimated values. Color shading corresponds to climatic events mentioned in the text (IBCP: Intra-Bølling cold period; IACP: Intra-Allerød cold period). Ecological groups (see also Figs. 4–5) according to Sardinero (2004) and Abel-Shaad et al. (2014): Riparian woodlands \(\text{(Alnus, Betula, Carpinus betulus, Corylus, Frangula, Fraxinus, Salix, Tilia and Ulmus)} \); High-mountain pinewoods \(\text{(Pinus sylvestris/nigra)} \); Dedicuous oak forests \(\text{(Quercus pyrenaica-type)} \); Cryoxerophytic taxa \(\text{(Artemisia, Chenopodiaceae, Ephedra distachya)} \). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
conditions during the Oldest Dryas probably favored Pinus nigra over P. sylvestris (García-Amorena et al., 2011; Desprat et al., 2015), although in these western territories of the ICS - where oceanic influence mitigated the dryness conditions - it is likely that both pines formed mixed woodlands as it does today in the central and eastern massifs of the Gredos range in the upper supra-mediterranean bioclimatic belt (Rubiales et al., 2007; López-Sáez et al., 2016).

5.2. Bølling/Allerød interstadial (~14.7–12.6 ka cal BP)

5.2.1. Bølling sub-interstadial (~14.7–14.0 ka cal BP)

The upper part of LPAZ-1 (~14.7–14.5 ka cal BP) and LPAZ-2a (~14.5–14.0 ka cal BP) are characterized by significant changes in pollen percentages of several trees, herbaceous taxa and NPPs. According to the age-depth model (Fig. 2) the upper part of LPAZ-1 and LPAZ-2a could correlate with the Bølling sub-interstadial (Greenland Interstadial 1e/GI-1e) ~14.7 ka cal BP, which has been documented in the NGRIP Greenland core (Fig. 6) by an abrupt increase in δ18O values (Rasmussen et al., 2008). Betula distinctly increases in LPAZ-2, while Pinus sylvestris/nigra and cryoxerophytic herbs gradually decrease (Figs. 3–4) and suggest the development of mixed coniferous-deciduous woodlands with Betula dominating the canopy. Nevertheless, Pinus sylvestris/nigra increases its values towards the end of LPAZ-2a (~14.1 ka cal BP. An optimum of birch woodlands has been also documented in the Pyrenees and the Alps in the Bølling oscillation (González-Sampérez et al., 2006; Giesecke et al., 2017). Trace amounts or low percentages of evergreen and deciduous Quercus, Carpinus betulus, Corylus, Castanea, Fagus, Fraxinus, Ilex, Juglans, Tilia, Ulmus and Olea suggest the presence of isolated stands of these trees or at least a regional presence (Huntley, 1990; van der Knaap et al., 2005; López-Sáez et al., 2010a, 2015; Broothaerts et al., 2018). A first spread of Quercus pyrenaica-type takes place (~14.5–14.0 ka cal BP (LPAZ-2a), starting from the Bølling sub-interstadial until the end of the Younger Dryas (~11.7 ka cal BP (Fig. 3). These facts coincide with the first step of the spread of deciduous Quercus throughout Europe in the Late Glacial interstadial (Brewer et al., 2002). Nevertheless, pollen records from central and southern Italian mountains, such as that from Lago Grande di Monticchio (Watts et al., 1996), Lago Trifoglietti (Beaulieu et al., 2017) and Lago di Mezzano (Sadori, 2018), already show the dominance of deciduous Quercus since 14.6 ka cal BP. Overall, the percentage of tree pollen increases in LPAZ-2a with respect to the previous zone. This implies that local vegetation was denser than before (~14.7 ka cal BP) but the woodland was not yet closed. This dynamics of progressive increase in tree cover is documented by comparing the antigenic curves of Betula and heliophilos/cryophilos herbs through LPAZ-2a (Figs. 3–4). The increase in tree taxa can be interpreted as a warming trend and an increase in humidity during the Bølling in the area (García-Alix et al., 2014). This interpretation is consistent with other pollen records from the Iberian Peninsula that show similar increases in high-mountain forests during the Bølling period (González-Sampérez et al., 2010; Camuera et al., 2019).

Between 14.7 and 14.0 ka cal BP, hygrophytic taxa (Cyperaceae, Myriophyllum alterniflorum, Typha) and NPPs indicators of oligotrophic open water conditions (HdV-120, HdV-170) display higher values, which could indicate moister conditions and advances of marginal vegetation around the palaeolake (Figs. 5–6). These data agree with the abrupt decrease of cryoxerophytic herbs (Figs. 4 and 6). In particular, the increase in Rvoluta-type (HdV-120) and Zygmenataceae (HdV-313, HdV-341, HdV-351) values would be indicative of oligo-mesotrophic conditions in the sedimentary environment (van Geel et al., 1983; López-Sáez et al., 1998; Carrión, 2002). LPAZ-2a (1557–1542 cm) is composed of dark-greenish/greyish-brown clayey silt (Fig. 2; Table 1) probably associated to hydrophorphic soils (Turó et al., 2018) and, thus, the Navamuño palaeolake level status remained more or less stable. Constant values of the Al/Ti ratio and low MS SI units (Fig. 6) confirm that the main sedimentary contribution was produced by suspension. Nevertheless, an increase in LOI (>10%) and decreasing Mn/Fe ratio is documented at this time (Fig. 6) suggesting an increase in organic productivity, likely related to an increase in temperature and rainfall and thus, deeper lake level conditions during the Bølling oscillation.

The reconstructed Pann values in the Navamuño record (Fig. 6) show an increasing trend between 14.7 and 14.4 ka cal BP, a decrease until 14.2 ka cal BP but with an intermediate maximum ~14.3 ka cal BP, and, finally, an increasing trend until 14.0 ka cal BP. These Pann values are higher than the current ones. A similar tendency is observed in the Pann reconstruction of the Quintanar de la Sierra pollen record in northern Iberia (Ivonen et al., 2019), as well as in the NGRIP core (Rasmussen et al., 2008). Our results are also in agreement with those presented by García-Alix et al. (2014) and Tarroso et al. (2016), who describe the Bølling oscillation as a period of increased precipitation in southern Iberia and the whole of the Iberian Peninsula, respectively. During the Bølling sub-interstadial Fagus sylvatica is recorded in a continuous way with somewhat higher percentages (Fig. 3). Probably, the reconstructed Pann values of greater humidity (Fig. 6) allowed the survival of beech in extra-local Late Glacial refugia of the Béjar range, particularly during the Bølling oscillation as also documented in other mountains in northern Iberia (López-Merino et al., 2008; Ruiz-Alonso et al., 2019). During the Bølling, the Tann reconstruction follows a dissimilar pattern with values always lower than the current ones (Fig. 6), with an initial decrease between 14.7 and 14.4 ka cal BP, a subsequent increase until it reaches a maximum ~14.35 ka cal BP, and, finally, a decreasing trend ~14.2–14.0 ka cal BP. This last cooling phase could be tentatively correlated with the Intra-Bølling cold period-IBCP (Yu and Eicher, 2001) and the above-mentioned increase in pine forests (Fig. 6). In the ICS, the only known evidence of the Bølling sub-interstadial comes from the Charco da Candieira pollen record (1400 m asl) in the Serra da Estrela (van der Knaap and van Leeuwen, 1997). The authors of this study suggest a cool and dry climate during the first half of the Bølling sub-interstadial ~14.8–14.27 ka cal BP, and a moister and warmer one ~14.27–14.1 ka cal BP at the end, although the vegetation dynamics is similar to that of the Navamuño record. The rainfall dynamics of the Portuguese record is also similar, while differences in temperature reconstruction may be related to the location of each core, which represent different pollen depositional and biogeographical environments (Peyron et al., 2005).

Macrocharcoal particles are only present for the upper part of the Bølling sub-interstadial (~14.3 ka cal BP), where macrocharcoal area reaches 0.2 mm²/g (Fig. 6). These results indicate an overall low fire activity, thus, the prevalence of sufficient biomass to sustain fire. This is in agreement with the abovementioned greater tree cover during this oscillation, characterized by a more extensive deciduous forest spread (mainly Betula and Quercus pyrenaica). In fact, the great variability of the temperature during the Bølling oscillation did not apparently promote large wildfire ignition in Navamuño, with a single macrocharcoal peak recorded (Fig. 6). As has been explained for Pyrenean records (Gil-Romera et al., 2014), it is feasible to think that this low frequency of fires during the Bølling may be related to cool summers and very low winter temperatures.

5.2.2. Older Dryas sub-interstadial (~14.0–13.4 ka cal BP)

An important change in the vegetation composition occurred at approximately 14.0 ka cal BP (LPAZ-2b; Figs. 3–6), namely a rapid decline of Betula, Salix, Quercus ilex and Juniperus and a slight rise in
*Pinus sylvestris/nigra, Cytisus/Genista, cryophylophilous/cryophilous herbs. This likely indicates a replacement of birch woodlands by high-mountain pine woods, brome communities and grasslands until ~13.4 ka cal BP. According to the age-depth model (Fig. 2), LPAZ-2b could be correlated with the Older Dryas oscillation (Greenland Interstadial 1d/GI-1d) ~14.0–13.4 ka cal BP, which has been documented in the NGRIP Greenland core (Fig. 6) by an abrupt decrease in δ¹⁸O values (Lowe et al., 2008; Rasmussen et al., 2008). Around the palaeolake, vegetation had a low tree cover and was dominated by a steppe-like landscape, with the small transitional peak in Rasmussen et al., 2008). Around the palaeolake, vegetation had a lower altitudes. As suggested by López-Sáez et al. (2013) and Broothaerts et al. (2018), it can be assumed that the frequencies of Pinus sylvestris/nigra observed during the Older Dryas might reflect local input from highland open pine woodlands.

The dominance of cryophylophilous and xerophilous herbs and the disappearance of *Fagus, Fraxinus* and *Ilex*, as well as the decline of most hydro-hygrophytic taxa and NPPs indicators of meso-eutrophic wet/open water conditions (Figs. 3, 5 and 6) suggest cold and dry climate conditions during the Older Dryas period (Huntley, 1990). A similar picture has been documented in northern and south-western Iberian terrains (mainly in montane environments (González-Sampérez et al., 2006; 2010; Morellón et al., 2009; Falu et al., 2010; Rubioles et al., 2010; Aranbarri et al., 2014; Moreno et al., 2014; Camuera et al., 2018; Oliva-Urcia et al., 2018) including the westernmost ICS (van der Knaap and van Leeuwen, 1997). In contrast, in the mountains of the central Mediterranean (central and southern Italy), this period is characterized by an increase in tree cover (mainly of *Abies* and deciduous *Quercus* but also of other mesophylophilous elements) and the permanence of cryophylophilous and xerophilous herbs (Watts et al., 1996; Beaulieu et al., 2017; Sadori, 2018). In this period, a strong decrease of LOI is also documented at Navamu, suggesting a substantial decrease in organic matter productivity in the palaeolake (Fig. 6).

During the Older Dryas episode the sedimentation rate increased (0.33–0.52 mm yr⁻¹; Fig. 2), probably related to increased erosion on the nearby slopes caused by a higher frequency of fires, as evidenced by a small peak (0.3 mm²/g) of macrocharcoals ~13.8 ka cal BP (Fig. 6). Although the Al/Fe ratio decreases at the beginning of this period (Fig. 6), in its upper part it reaches a maximum that would reflect, again, sedimentation fundamentally by suspension. Therefore, low fire activity around the Navamu depression during this wooded steppe phase of the Older Dryas is consistent with the interpretation of low fuel availability on the Iberian Peninsula during stadial o cold sub-interstadial periods (Danau et al., 2007).

At this time (1542–1520 cm), sedimentation in the Navamu depression changed from lacustrine dark-grey-brown clayey silt during the Bølling sub-interstadial to dark green silty clay with the onset of the Older Dryas (Fig. 2; Table 1). These sediments present the typical coloring of reductive sedimentary conditions (Turu et al., 2018). This discoloration occurs when the redox potential is low and there is leaching by the phreatic surface of chromogenic compounds such as Fe and Mn, suggesting deeper and poorly oxygenated mixed water conditions in the palaeolake (Halluc et al., 2017). Fluctuations in Fe and Mn content in the sediments have been commonly interpreted as a reflection of mineral input variability (clays, heavy metals and oxides), and as changes in redox conditions in lake environments because of their different responses to oxygen conditions (Naehr et al., 2013). Thus, increasing water inflow in the Navamu palaeolake during the onset of the Older Dryas is supported by very low Mn/Fe values (Fig. 6), which would suggest accordingly deeper and poorly oxygenated mixed water conditions (Davison, 1993). Subsequently, the Mn/Fe ratio increases again until ~13.3 ka cal BP (Fig. 6) pointing to lower better oxygenated waters. These facts agree with a maximum of HdV-120 indicating a lake deposit, but not in an optimal lake’s earliest phase (Pals et al., 1980).

The Older Dryas (~14.0–13.4 ka cal BP) was a drier period than the previous Bølling oscillation but similar to the current conditions. Pann values show a decreasing trend until ~13.7 ka cal BP and then a growing pattern until ~13.4 ka cal BP (Fig. 6). Mean annual temperatures also show a marked difference increasing to a maximum value ~13.9 ka cal BP, and then declining abruptly until ~13.4 ka cal BP (Fig. 6). Nevertheless, it is interesting to note that although Tann values show a clearly decreasing pattern during the Older Dryas, its values are generally higher than those of the Bølling oscillation but significantly lower than the current ones. These facts can be interpreted within the general trend of global warming associated with the Bølling/Allerød interstadial in southern Europe (Morellón et al., 2009; Carrion et al., 2010; González-Samperiz et al., 2010; Rodrigo-Gámiz et al., 2011; Moreno et al., 2014; Beaulieu et al., 2017; Sadori, 2018).

5.2.3. Allerød sub-interstadial (~13.4–12.6 ka cal BP)

5.2.3.1. Greenland interstadial 1c (~13.4–12.1 ka cal BP) and *Intra-Allerød cold period (~13.1–12.9 ka cal BP). In the first half of the LPAZ-2c sub-zone (1520-1515 cm; 13.4–13.1 ka cal BP), *Pinus sylvestris/nigra, Betula* and *Salix* pollen percentages rapidly increase, although those of birch and willow are then significantly reduced, whereas those of *Alnus*, evergreen and deciduous *Quercus* increase (Fig. 3). In contrast, in the second half of LPAZ-2c (1515–1500 cm; 13.1–12.9 ka cal BP), *Betula* pollen percentages progressively increase, whereas those of *Pinus sylvestris/nigra* and *Quercus ilex* decline, suggesting that *Pinus*-dominated woodlands were replaced by degrading pine-birch woodlands and that regionally meso-mediterranean oak forests were reduced probably in favor of degrading serial stages consisting of rockrose (*Cistus*-type) (Figs. 3–6). The walnut tree (*Juglans regia*) is continuously present throughout the LPAZ-2c sub-zone, while *Corylus, Tilia* and *Ulmus* are only present from ~13.1 ka cal BP (Fig. 3), suggesting the existence of refuge areas for these species in the southern valleys of the Béjar range (López-Sáez, 1993; López-Sáez and López-García, 1994; Abel-Schaad et al., 2014). Heliophilous/cryophilous herbs are also more abundant from ~13.1 ka cal BP.

In the second half of LPAZ-2c sub-zone, pollen of aquatic plants and wetland taxa slightly decrease (Figs. 5–6), suggesting they were dominant around the lake shore only ~13.4–13.1 ka cal BP. Similarly, within the NPPs (Figs. 5–6), the first half of the sub-zone is characterized by the dominance of *Rivularia*-type (HdV-170), while the second is dominated by HdV-120, HdV-174 and *Zygnemataceae* (HdV-313, HdV-314, HdV-315), suggesting a change in the lake trophic conditions from oligotrophic open water conditions ~13.4–13.1 ka cal BP to meso-eutrophic ones at the end ~13.1–12.9 ka cal BP (Pals et al., 1980; van Geel et al., 1983; López-Sáez et al., 1998).

According to the age-depth model (Fig. 2) the lower part of LPAZ-2c could correlate with the Greenland Interstadial 1c (GI-1c) ~13.4–13.1 ka cal BP, while the upper part of the sub-zone could be tentatively correlated with the *Intra-Allerød* cold period (IACP; Greenland Interstadial 1b/GI-1b) ~13.1–12.9 ka cal BP (Yu and Eicher, 2001; González-Samperiz et al., 2006), which have been documented in the NGRIP Greenland core (Fig. 6) by an abrupt increase and a subsequent decrease in δ¹⁸O values, respectively (Rasmussen et al., 2008). LPAZ-2c is composed of dark green silty clay (Fig. 2; Table 1), probably associated to hydromorphic soils (Turu et al., 2018).

During the GI-1c sub-interstadial and the IACP (Fig. 6), the inferred Pann values are slightly higher than the current ones
(about 100 mm). These Pann values are very similar to those documented during the Bølling oscillation. Nevertheless, the reconstructed Tann values during the GI-1c sub-interstadial abruptly increase from a minimum ~13.3 ka cal BP to a maximum ~13.1 ka cal BP. Then they decrease sharply during the IACP (Fig. 6), suggesting the shift from more thermal climatic conditions to colder ones around 13.1 ka cal BP. These climatic trends could explain the development of high-mountain pine forests, acting as pioneers during the GI-1c warm period. A temperature increase is also marked during the GI-1c sub-interstadial by increasing percentages of hydro-phyrophytic herbs and a greater abundance of coprophilous fungi (Figs. 5–6) that could probably be related to a greater influence of wild fauna in the environment of the palaeolake installed in the Navamuño depression (Carrion, 2002; Carrion and Navarro, 2002; Lopez-Saez and Lopez Merino, 2007). On the other hand, a progressive trend towards colder conditions during the IACP would have meant the development of birch woods to the detriment of pine forests, reducing the hydro-phyrophytic herba-ceous cover around the lake and changing its trophic conditions from oligotrophic to meso-eutrophic ones. The increase in helio-philous/cryophilous herbs during the IACP is also a proof of the decrease in temperature.

Recent work has shown that the Al/Ti ratio increases while the Mn/Fe ratio slightly decreases (Fig. 6). Thus, the IACP could be considered as a similar period to the abovementioned Older Dyras but of lesser magnitude in the palaeoecological evolution of the study area. Therefore, we can interpret the Mn/Fe ratio as a proxy for the Navamuño palaeolake level oscillation where increasing values during the GI-1c sub-interstadial depict an oxygenated environment under lower lake levels, while decreasing ones during the IACP suggest poorly oxygenated water and higher lake levels (Davison, 1993; Haliciu et al., 2017; Oliva-Urcia et al., 2018).

5.2.3.2. Allerød oscillation (~12.9–12.6 ka cal BP). A notable increase in tree pollen percentages is documented in the lower part of the LPAZ-3a (1500–1485 cm) pollen sub-zone ~12.9–12.6 ka cal BP (Fig. 3). In this period, high-mountain pines, broom communities and junipers as well as some deciduous trees and Pinus pinaster develop, while Betula abruptly decreases. Cryophytophie and heliophilous/cryophilous taxa also reduce their percentages at this time, while hygrophytic taxa increase significantly (Figs. 4–6). These data suggest warmer and wetter climatic conditions, which according to the age-depth model (Fig. 2) could correlate with the Allerød episode (Greenland Interstadial 1a/GI-1a) ~12.9–12.6 ka cal BP, which has been documented in the NGRIIP Greenland core (Fig. 6) by an increase in δ^{18}O values (Rasmussen et al., 2008). A similar pattern has been documented in Pyrenean, Cantabrian, Southern Iberian and Baetic pollen records from Iberian mountain areas during the Allerød warm period, including the development of high-mountain pine forests and junipers acting as pioneers (Carrion, 2002; Gonzalez-Samperez et al., 2006, 2010; Aranbarri et al., 2014; Rubiales et al., 2010; Iriarte-Chiapusso et al., 2016), as well as the reappearance of beech in the pollen records (Lopez-Merino et al., 2008; Ruiz-Alonso et al., 2019).

The reconstructed Pann and Tann values during the Allerød oscillation clearly show an increase in both rainfall and temperature, with maximum values ~12.8 ka cal BP, although these later decrease (Fig. 6). Anyway, Pann values are always higher (100–400 mm) than the current ones, while Tann values are always lower. This climatic improvement, that allowed rapid forest reorganization by a general development of high-mountain pine forests, has been documented in all European mountain areas (Watts et al., 1996; Ammann et al., 2007; Beaulieu et al., 2017; Giesecke et al., 2017). Therefore, it suggests a warming trend from the Bølling to the Allerød period that has also been evidenced in both marine and terrestrial records in the southern Mediterranean region (Watts et al., 1996; Naughton et al., 2007, 2019; Lowe et al., 2008; Gonzalez-Samperez et al., 2010; Moreno et al., 2014; Beaulieu et al., 2017; Sadori, 2018). In summary, in the Navamuño depression, it can be assumed that pioneer open pine woodlands were developing in the vicinity of the palaeolake during the Allerød oscillation. However, in the Serra da Estrela, the Allerød episode was characterized by increasing values of both pine and birch (van der Knaap and van Leeuwen, 1997), likely related to a greater influence of wet winds from the Atlantic Ocean in these westernmost territories of the ICS (Abel-Schaad et al., 2014). It is also interesting to note the expansion of both evergreen and deciduous Quercus (Figs. 3 and 6) in response to the Allerød oscillation (Bjorkck et al., 1997), which fully agrees with other Iberian and southern Mediterranean areas where a broadleaved forest expansion has been recognized (Watts et al., 1996; Pons and Reille, 1988; Brewer et al., 2002; Gonzalez-Samperez et al., 2006; Lopez-Merino et al., 2008, 2012; Iriarte-Chiapusso et al., 2016; Beaulieu et al., 2017; Camuera et al., 2018, 2019; Sadori, 2018).

During the Allerød oscillation the Al/Ti and Mn/Fe ratios follow antagonistic trends. The former shows a declining but oscillating pattern, while the latter displays a growing trend, as does LOI (Fig. 5), suggesting better oxygenated waters with a lower contribution of terrigenous elements, low lake levels and higher organic productivity in the palaeolake (Gonzalez-Samperez et al., 2006; Haliciu et al., 2017). Although with low values (0.12–0.44 mm^3/g), macrocharcoal particles are continuously present during the Allerød oscillation ~12.9–12.6 ka cal BP (Fig. 6), probably indicating an overall low fire activity, which is in agreement with the abovementioned increase in tree cover during this warm episode. A similar trend in the frequency of fires has been documented in the Serra da Estrela during this period (Connor et al., 2012). The regionally homogeneous pattern in biomass burning in the western ICS suggests modulation from a large-scale driver, namely the climate regime. According to Gil-Romera et al. (2014), during this warm interval summer temperature progressively increased, leading to a parallel increase in fire frequency, supporting this climatically driven character of these fires. Human societies had no or little and localized influence on regional fire and vegetation dynamics during this time interval, since only one relatively remote Upper Palaeolithic archaeological site (Fig. 1) have been documented in the Béjar range, which corresponds to a hunter’s camp (La Dehesa) of the Upper Magdalenian (Hernández-Díaz and Avilés-Amat, 2013).

5.3. Younger Dryas stadial (~12.6–11.7 ka cal BP)

The upper part of the LPAZ-3a pollen sub-zone (1485–1420 cm) is marked by a transitional reversal of the Betula curve after a maximum reached ~12.5 ka cal BP, while frequencies of cryoxerophytic taxa and heliophilous/cryophilous herbs, Cytisus/Genista, Juniperus and Lamiaceae reach higher values ~12.6–11.7 ka cal BP (Figs. 3, 4 and 6). Maximum values of Betula have also been documented in the Lago Trigolletti and Lago Grande di Monticchio pollen records (southern Italy) ~12.5–12.4 ka cal BP (Watts et al., 1996; Beaulieu et al., 2017). Although following an oscillating curve, the percentages of Pinus sylvestris/nigra show an increasing trend reaching maximum values ~12.1–11.9 ka cal BP (Fig. 3). Such assemblages indicate a local extent of high-mountain pine forests with broom communities and junipers (Lopez-Saez et al., 2013; Giesecke et al., 2017; Broothaerts et al., 2018), as well as the development of cold steppe grasslands linked with a decline of birch woodlands in the area. Regional beech (Fagus sylvatica) populations are maintained and even appear to be increasing, like in other pollen records in the north of the Iberian Peninsula.
–12.6–11.7 ka cal BP (López-Merino et al., 2008; Ruiz-Alonso et al., 2019). This reversal in the vegetation dynamics has been typically recorded during the Younger Dryas cold and dry event (Greenland Stadial 1/GS-1) in northern and southern mountain Iberian pollen records (Pons and Reille, 1988; Carrión, 2002; Muñoz-Sobrino et al., 2004, 2013; González-Sampériz et al., 2006, 2010; Carrión et al., 2010; Moreno et al., 2011; López-Merino et al., 2012; Morales-Molino and García-Antón, 2014; García-Ruiz et al., 2016; Iriarte-Chiapuso et al., 2016; Camuera et al., 2018). This is in agreement with the Navamuño age-depth model, which places the top of the LPAZ-3a pollen sub-zone ~12.6–11.7 ka cal BP (Fig. 2). Nevertheless, sequences from other Iberian Mediterranean continental and southern Italian mountain areas generally show little changes in vegetation composition and the persistence of conifers, deciduous oaks and open landscapes (Watts et al., 1998; Aranbarri et al., 2014; Beaujot et al., 2017). The Younger Dryas is clearly recorded in Greenland ice cores (Fig. 6) by low and oscillating δ18O values (Alley, 2000; Rasmussen et al., 2008), as well as in many other palaeoenvironmental studies across the western Mediterranean (Morellón et al., 2009; Fletcher et al., 2010; Moreno et al., 2014; Tomasso et al., 2018; Naughton et al., 2019).

The Younger Dryas was locally characterized by a lake-level drop as indicated by the removal towards the deposition of dark brown silty clay (Fig. 2; Table 1). The greater abundance of organic matter - with two LOI maximum values ~12.2 ka cal BP (1458 cm) and 11.45 ka cal BP (1379 cm) (Fig. 6) - gives the sediment their characteristic dark brown color, interpreted as a marshy environment (Turú et al., 2018). A sharp decrease in Al/Ti ratio and a moderate reduction in MS (Fig. 6) corroborate this hypothesis. During the early Younger Dryas, the Mn/Fe ratio increases until ~12.2 ka cal BP (Fig. 6) pointing to lower and better oxygenated waters (Haliuc et al., 2017). The surface enrichment in Mn is probably related to vadose oxic conditions ~12.6–12.2 ka cal BP, which involve more favorable conditions for oxidized, less mobile forms of these elements to form (Chesworth et al., 2006). Lower LOI values and decreasing ones of the Mn/Fe ratio ~12.2–11.7 ka cal BP (late Younger Dryas) support the idea of greater water saturation of sediments (Fig. 6), deeper but less oxygenated water (Davison, 1993; Haliuc et al., 2017). Around the marsh, vegetation was probably forested and dominated by pines and a steppe-like landscape, with the still important presence of both deciduous and evergreen oaks (Quercus pyrenaica and Quercus ilex pollen types), beech (Fagus sylvatica) and hazel (Corylus) resulting in an increasing proportion of regional vegetation input from lower altitudes (López-Sáez et al., 2010a, 2015; Abel-Schaad et al., 2014). In addition, the increase in Pinus sylvestris/nigra at this time may partially reflect an altitudinal migration of the pinewood treeline associated with the onset of cooler conditions at high elevations (Aranbarri et al., 2014). During the Younger Dryas some hydrophytrophic herbs develop thanks to the installation of the afore-mentioned marsh-type environment (Figs. 5–6). Meanwhile, the phrectic level decrease, which could even have meant the possible desiccation and sub-aerial exposure of the site, would have led to the disappearance of all NPPs (Fig. 5).

The transition to the Younger Dryas is characterized by a rapid decrease in Pann values ~12.6–12.0 ka cal BP followed by an abrupt increase until 11.7 ka cal BP (Fig. 6). The Tann curve from Navamuño core shows that the first part of the Younger Dryas ~12.6–12.0 ka cal BP was warmer than the second one ~12.0–11.7 ka cal BP (Fig. 6). The palaeoclimatic reconstruction then suggests dry and warmer conditions for the first part of the Younger Dryas and wetter and cooler ones for the second one. This pattern is in agreement with the results obtained by Ivonen et al. (2019), who document drier conditions during this period than in the previous Allerød sub-interstadial. van der Knaap and van Leeuwen (1997) cite a dry and cool climate in the first part of the Younger Dryas ~12.85–11.87 ka cal BP at Serra de Estrela, followed by a moister and warmer period at the end of the Younger Dryas ~11.87–11.63 ka cal BP. Aranbarri et al. (2014) and Wei et al. (2019), as in the Navamuño sequence, point to wetter conditions for the second part of the Younger Dryas ~12.2–11.7 ka cal BP in the Villarquemado palaeolake record (Southern Iberian Range). Similar to our data, Morellón et al. (2018) also document two climatic phases within the Younger Dryas in their synthesis of the Iberian Peninsula, emphasizing the great existing spatial variability of palaeoclimatic and palaeohydrological conditions during the GS-1, besides the generalized occurrence of cold and arid conditions. These conditions have been recorded in northern Iberian lacustrine records during the Younger Dryas (Moreno et al., 2011; Muñoz-Sobrino et al., 2013; Iriarte-Chiapuso et al., 2016). By contrast, the Sanabria lake (northwestern Iberia) shows a more complex pattern (Muñoz-Sobrino et al., 2004), including a first colder and wetter phase ~12.9–12.4 ka cal BP followed by a subsequent warmer and drier one ~12.4–11.7 ka cal BP. A biphasic structure of the Younger Dryas has been also recorded in the speleothem sequence of Sesó Cave (Southern Pyrenees), with an initial phase ~12.9–12.5 ka cal BP characterized by dry conditions, followed by a progressive increase in humidity and warmer conditions until 11.7 ka cal BP (Bartolome et al., 2015). A similar variability was found in La Garma Cave (Cantabrian Mountains), with a more direct influence of the westerlies ~12.85–12.15 ka cal BP, and milder conditions afterwards (Baldini et al., 2015). In general, Mediterranean littoral areas recorded markedly arid conditions during most of the Younger Dryas, either in two phases or in a more continuous pattern, especially remarkable in its second half (Morellón et al., 2018). In short, the palaeoclimatic reconstruction of Navamuño offers yet another proof of the great variability that exists within the Younger Dryas. Despite its location in the Mediterranean region, this record shows the same variability as others documented in the north and northwest of the Iberian Peninsula within the Eurosiberian biogeographical region. Probably, the location of the Navamuño sequence at the westernmost end of the ICS, as well as the influence exerted by the proximity of the Atlantic Ocean, could explain these facts.

Enhanced and continued fire activity along with an increasing sedimentation rate (0.85–1.18 mm yr⁻¹) is evident during the Younger Dryas stadial ~12.6–11.7 ka cal BP (Figs. 2 and 6), with maximum macrocharcoal values (1.3 mm²/g) and a maximum peak of Asphodelus albus ~11.9 ka cal BP (Fig. 4), coinciding with the abovementioned more extensive high-mountain pine forest spread. At the westernmost end of the ICS, a similar period of increased but low fire activity has been documented in the Serra da Estrela –12–11 ka cal BP, which has been interpreted as a phase of low fuel availability related to steppe-type vegetation (Connor et al., 2012). One explanation for the observed pattern at Navamuño record is that a dry and warm climate during the first half of the Younger Dryas ~12.6–12.0 ka cal BP may have increased the tree and shrub mortality (with minimum values of Pinus sylvestris/nigra and a progressive decrease of the Betula curve; Fig. 3), whereas an important temperature decline (~2 °C) and high moisture availability ~12.0–11.7 ka cal BP likely promoted ignition and fire spread. An increase in fire activity at the end of the Younger Dryas has been also documented for Central Europe and North America linked to high tree mortality (Marlon et al., 2009; Feurdean et al., 2012). Nonetheless, the composition of vegetation and flammability of forest species may have also acted as a significant driver of fire activity in the western Iberian Range (Viedma, 2008; Moreno-Rodríguez et al., 2011). For example, pollen and macrocharcoal records from the ICS suggest that increasing fire activity coincides with periods with greater biomass availability,
namely with the expansion of *Pinus sylvestris/nigra* forests under wetter climate conditions (Morales-Molino et al., 2013; López-Sáez et al., 2018a, 2018b). Although vegetation burning is more frequently documented in warm and dry periods, fire events are often preceded by wetter conditions that favor biomass up-take (Daniau et al., 2007; Zumbrunnen et al., 2009; Camarero et al., 2018; Sangüesa-Barreda et al., 2019).

5.4. Early Holocene (~11.7–10.6 ka cal BP)

5.4.1. The expansion of pine forests during the early Preboreal (~11.7–11.45 ka cal BP)

Distinct vegetation changes occurred around ~11.7–11.45 ka cal BP (LPAZ-3b), when *Pinus sylvestris/nigra*, *Cytisus/Genista* and *Juniperus* quickly expanded on the slopes surrounding the site, accompanied by a sudden decrease of *Betula*, *Corlus*, *Fagus sylvatica* and *Quercus* species (Fig. 3). These data suggest the development of high-mountain pine forests enriched in broom communities and crawling junipers (Rubiales et al., 2007, 2010; López-Sáez et al., 2013; García-Alvarez et al., 2017; Broothaerts et al., 2018). According to the age-depth model (Fig. 2), the timing of the marked changes coincides with the late Pleistocene/Holocene transition ~11.7 ka cal BP (early Preboreal), which is expressed as a rapid temperature rise in many European pollen records (Björck et al., 1997; Giesecke et al., 2017), as well as by an abrupt increase in δ¹⁸O values (Fig. 6) in the NGRIP Greenland core (Rasmussen et al., 2008). The vegetation around Navamuño seems to have responded almost instantaneously to this climate change by a rapid high-mountain reforestation and a dramatic reduction of open vegetation communities (Fig. 3) and birch woodlands. However, the relative high amount of cryoxerophytic and heliophilius/cryophilous taxa suggest the presence of some tree patches dominated by steppe-like communities (Figs. 3, 4 and 6). A similar pattern has been documented in northern, southern and eastern Iberian pollen records, where the existence of high-mountain pine forests at the very beginning of the early Holocene is basically a consequence of altitude, continentality and aridity in mountain areas (Carrión, 2002; Carrión et al., 2010; González-Samperiz et al., 2010; Rubiales et al., 2010; Aranbarri et al., 2014). Palynological records from the Serra da Estrela show a broadly similar trend of vegetation reforestation for the early Holocene (van der Knaap and van Leeuwen, 1997), although woodland was composed of *Betula, Salix* and *Frangula*. This is not surprising considering that in the westernmost sector of the ICS the continentality is buffered by the oceanic influence coming from the west (van der Knaap and van Leeuwen, 1997; Gavilán, 2005). Similarly, some pollen records from southern Italian mountains also show the abundance of birch in the early Preboreal as well as the permanence of cryoxerophytic taxa although following a decreasing pattern (Watts et al., 1996; Beaulieu et al., 2017).

Drier conditions could be also inferred from decreasing wetland taxa, possibly as a response to higher temperatures, although the maintenance of *Alisma*, *Cyperaceae*, *Epilobium* and *Myriophyllum alterniflorum* (Fig. 5) probably suggests the local existence of a floodplain with stagnant shallow water (Carrión, 2002). In fact, the Navamuño record (Fig. 2; Table 1) indicates at this time (~11.7–11.45 ka cal BP; 1420-1375 cm) the transition from dark green silty clay to sands mixed with dark brown silt, as well as a constantly increasing sedimentation rate (1.18–1.47 mm yr⁻¹), suggesting a new baseline-level rise after the Younger Dryas, probably indicative of the installation in the Navamuño depression of a shallow lagoon, or more likely a floodplain, since the appearance of paleosols does not allow us to suppose the existence of a lake (Carrasco et al., 2018). Confirming these facts, in this period both Al/Ti and Mn/Fe ratios show a decreasing pattern, like LOI values, while MS progressively increase (Fig. 6), suggesting a greater saturation in water of the sediments, particularly of coarse silts and sand size fractions, and reduced detrital input (Kylander et al., 2011). An immediate recovery of lake levels after the Younger Dryas has been also documented in most records of the Iberian North, while those of the Mediterranean region document a general decrease in lake level (Morellón et al., 2018). The Navamuño hydrological history shares aspects of both trends but resembles more closely records from northern sites.

The early Holocene ~11.7–11.45 ka cal BP is characterized at Navamuño by a rise in the Tann values compared to the previous Younger Dryas stadial (Fig. 6), clearly showing the progressive warming that occurred at the onset of the Holocene with values even higher than the current ones. On the other hand, Pann values show a relatively constant pattern (Fig. 6), although in general with values lower than those documented in the final part of the Younger Dryas and today, suggesting therefore relatively more arid conditions. These values are close to that reconstructed from pollen data at Quintanar de la Sierra in the Northern Iberian System (Ivonen et al., 2019).

Our data indicate great fire activity at the beginning of the early Holocene ~11.7–11.45 ka cal BP (Fig. 6). The increasing trend of MS values is probably related to fires that occurred in the Navamuño depression, as evidenced by the substantial increase in macrocharcoals (Fig. 6), but could be also related to wetter conditions suggesting that runoff dominated over aeolian processes at this time (Mesa-Fernández et al., 2018). Interestingly, the increase in biomass burning at Navamuño from ~11.7 ka cal BP is earlier than in most other south-western European records, where it occurred mainly after 11.3 ka cal BP (Carrión, 2002, Carrión, 2012; Vannière et al., 2008, 2010, 2011; Gil-Romera et al., 2010a, 2014; Connor et al., 2012, 2019; Burjachs and Expósito, 2015). We can therefore suggest that the development of high-mountain pine forests and broom communities during the early Holocene in the western ICS and their rapid postglacial expansion imply substantial biomass availability already at the onset of the Holocene. This rise in fire activity also coincides with a large increase in the atmospheric CO₂ (Harrison and Prentice, 2003) and a massive decline in herbivores pressure (coprophilous fungi were not recorded at this time) and both could have further lead to a biomass increase. Higher *Asphodelus albus* percentages (Fig. 4) are also indicative of the above-mentioned higher frequency of fires (Abel-Schaad and López-Sáez, 2013).

5.4.2. The abrupt climate event ~11.4 ka cal BP (Preboreal oscillation)

The previous described trend is abruptly altered ~11.45–11.3 ka cal BP (bottom of LPZA-4; 1375–1330 cm) as demonstrated by maximum values of *Betula, Alnus, Quercus ilicis, Quercus pyrenaica, Juglans, Corylus, Fagus sylvatica, Lamiaceae, Juniperus, Cytisus/Genista, Ephedra distachya* and *Erica australis* and a clearly decreasing pattern of *Pinus sylvestris/nigra* (Fig. 3). Among herbs (Fig. 4), cryoxerophytic, heliophilius/cryophilous elements and others herbs typical of open spaces and sandy soils increase their values, suggesting the development of cryoxerophylic and heliophilius/herba-ceous communities in the vicinity of the site. These data are consistent with the increase of most hydro-hygrophytic taxa and both Filicales monolete and trilete (Figs. 5–6). Fairly high pollen percentages for riparian woodland and wetland indicators (Fig. 6) indicate that these communities developed around the margins of the depression, particularly the birch, thanks to its pioneering and heliophilius character suggesting the development of open mixed woodland dominated by *Betula* and *Pinus sylvestris/nigra* with broom communities, crawling junipers and heaths (García-Alvarez et al., 2017; Broothaerts et al., 2018). This abrupt change is also
recorded by maxima values of Al/Ti and Mn/Fe ratios, higher values of macrocharcoals, a maximum of MS ~11.37 ka cal BP (1350 cm) and a marked peak of LOI values ~11.35 ka cal BP (1340 cm) (Fig. 6). All these facts are coherent with a new base-level drop and dominant ephemeral lake conditions, producing an increase of lithogenic elements by detrital input, especially of sands from the neighboring sedimentation basin (Fig. 2; Table 1), as a result of erosive processes associated both with the decrease in base-level and the recurrence of local fires (Koing et al., 2003; Haliuc et al., 2017). Maximum Glomus values (Fig. 5) can be also interpreted as a result of the abovementioned erosive events (Carrion and Navarro, 2002). The sharp rise in percentage of Typha angustifolia and the presence of NPPs indicators of meso-eutrophic wet/open water conditions (Fig. 5) could indicate a shallow basin environment (Lópezez-Sáez et al., 1998; Carrion and Navarro, 2002).

According to the age-depth model (Fig. 2), the aforementioned data can be correlated with the so-called 11.4 ka cal BP abrupt climatic event characterized by dry continental and cool conditions (van der Plicht et al., 2004). This phase was coeval with the coldest part of the Preboreal oscillation (Fig. 6) as observed in the δ18O record of the Greenland ice-core record (Björck et al., 1997; Rasmussen et al., 2008), attributed to a large meltwater flux that resulted in a temporary increase during the 11.4 ka cal BP, the so-called Younger Dryas (Fisher et al., 2002). This climatic reversal has already been documented in northern and eastern Iberian pollen records (Gonzalez-Sampérez et al., 2010; Burjachs et al., 2016; Iriarte-Chiapusso et al., 2016) although this is the first evidence in the Spanish Central System. In the Serra da Estrela, van der Knaap and van Leeuwen (1997) documented this oscillation ~11.49 ka cal BP by a halt in tree expansion and low lake levels.

The paleotemperature record at Navamuño (Fig. 6) shows a first slight cooling at around 11.45–11.43 ka cal BP, then a strong increase ~11.42 ka cal BP, and finally a progressive decrease until 11.3 ka cal BP. The 11.4 ka cal BP event in the Navamuño record is characterized by a marked peak in the Pann values ~11.45 ka cal BP, followed by a progressive decline until 11.41 ka cal BP, and finally a new marked peak ~11.33 ka cal BP (Fig. 6). Pann values are generally lower than those documented during the second half of the Younger Dryas. Greater aridity conditions are also illustrated by maxima of NPPs indicators of local dry conditions (Fig. 5), particularly Pleospora sp. (HdV-3B), Triglocladium opacum (HdV-10) and HdV-20 (van Geel, 1978). The aforementioned decrease in lake level would probably favor wildlife access to the Navamuño depression, hence the increase in coprophilus fungi values (Fig. 5).

Increasing fire activity is documented during the 11.4 ka cal BP event (maximum macrocharcoal values: 2.18 mm2/g), coinciding with the development of birch woodlands and Asphodelus albus (Figs. 5–6). A similar period of increasing fire frequency has been documented in the Serra da Estrela ~11.4–11.3 ka cal BP (Connor et al., 2012). Although some authors consider that human communities of the Mesolithic could have favored early Holocene fires (Ryan and Blackford, 2010), no archaeological site of this chronology has so far been documented in the study area (Hernández-Díaz and Avilés-Atan, 2013). The long-term role of birch in the supra-mediterranean bioclimatic belt of the Gredos range is in agreement with its documented early-successional character after disturbances, as revealed by other Holocene sequences (Atienza et al., 1996; Abel-Schaad et al., 2014; Lópezez-Sáez et al., 2014; García-Alvarez et al., 2017) and ecology studies on its respouting ability (Reyes and Casal, 1998). Interestingly, Betula in Navamuño was a main factor in building up fuel during the 11.4 event but its development was negatively affected by fire at the beginning of the early Holocene and immediately after the abovementioned abrupt event (Fig. 6). This fact is common with most mountain trees, supporting the idea of the high-mountain ecosystem as a long-term fire-sensitive environment (Gil-Romera et al., 2014).

5.4.3. Climate instability during the late Preboreal (~11.3–10.6 ka cal BP)

The late phase of the early Holocene ~11.3–10.6 ka cal BP in the study area was still characterized by open mixed woodlands dominated by Betula and Pinus sylvestris/nigra with broom communities, crawling junipers and heaths (top of LPAZ-4: 1330–707 cm). However, during this period the antagonistic pattern followed by birch and pine, with three maxima for the former (~11.17, 11.11, and 10.87 ka cal BP) and another three for the latter (~11.16, 10.98, and 10.7 ka cal BP), is very noticeable (Fig. 3). Usually, maximum birch values are concomitant with maximum Alnus glutinosa and Tilia percentages (Fig. 3). This increase of more water-demanding temperate taxa such as birch, alder and lime suggests increasing temperature and humidity (Aranbarri et al., 2014), while maximum values for pine would be indicative of greater continentality and drier conditions (Lópezez-Sáez et al., 2013; Broothaerts et al., 2018). Therefore, the greatest difference between the top and the bottom of LPAZ-4 is a sudden shift to a more humid climate when riparian woodlands expanded again ~11.3 ka cal BP at the beginning of the late Preboreal. This is consistent with the peak/average increase of most hydro-hygrophytic taxa and NPPs indicators of oligo-mesotrophic open water conditions such as Rivularia-type (HdV-170), which presents maximum values ~10.9–10.8 ka cal BP (Fig. 5).

Between 11.3 and 10.6 ka cal BP, a clear vegetation change occurred also in the Navamuño depression lowlands, with the spread of broadleaved vegetation, both deciduous and evergreen Quercus (Figs. 3 and 6). A similar picture has been documented in the Serra da Estrela ~11.05–10.52 ka cal BP (van der Knaap and van Leeuwen, 1997), suggesting denser woodlands and the first arrival of oaks near the Navamuño depression as a result of climatic warming (Brewer et al., 2002; Carrion et al., 2010; Lópezez-Sáez et al., 2015). In fact, maximum values for Quercus pyrenaica ~11.68 and 10.91 ka cal BP coincide with minimum percentages of birch throughout this period (Fig. 3), probably indicating that deciduous oaks became dominant and birches were restricted to moist habitats (García-Alvarez et al., 2017). Thus, the beginning of the Holocene forest recovery was very pronounced as in many other Iberian and southern Mediterranean pollen records, where tree populations expanded dramatically in response to warmer and wetter climate (Watts et al., 1996; Carrion et al., 2010; Carrion, 2012; Beaulieu et al., 2017; Sadori, 2018). The oscillating dynamics of the Quercus pyrenaica curve suggests that deciduous oak expansion may have occurred in pulses, rather than as a gradual rise (van der Knaap and van Leeuwen, 1997).

The anomalous increase in sedimentation rate from 1330 to 785 cm (~11.3–10.95 ka cal BP), which reaches average values of 14.89 mm yr−1 and maximum of 100 mm yr−1~11.12 ka cal BP (Fig. 2), clearly marks a sudden change in the sedimentary regime (Turú et al., 2018). Probably, this anomalous sedimentation could be correlated with the environmental and geomorphological destabilization of the Navamuño depression after the abovementioned 11.4 ka cal BP abrupt event. This segment of the sequence is initially characterized by coarse sand, which subsequently transitions to dark brown silts ~11.05 ka cal BP (Table 1) coinciding with a MS maximum (839 cm) (Fig. 6). This suggests great variations in the abundance of magnetic minerals and rapid changes in sediment environmental magnetic characteristics. Therefore, MS fluctuation likely correlates with changes in the Al/Ti ratio, thus in the composition of the allochthonous and lithogenic sediment components, overprinted by syn- and postsedimentary redox changes, as suggested by a maximum of the Mn/Fe ratio ~10.9 ka cal BP (Fig. 6). LOI values generally show a downward curve although a
are more stable (Iriarte-Chiapusso et al., 2016). The role (Aranbarri et al., 2014), while those of the Eurosiberian region are particularly in inland areas where continentality played a fundamental role (Carrasco et al., 2015b, 2018). This type of new configuration may have occurred, including the dominance of silts. At this time it is feasible to assume the total disappearance in the depression of any landscape structure. (Carrasco et al., 2018). Subsequently, the Navamuño depression seems to stabilize ~10.95–10.6 ka cal BP, reducing the sedimentation rate to 2.19 mm yr⁻¹ (Fig. 6). This is followed by a stepwise decrease in LOI, MS, Al/Ti and Mn/Fe ratios (Fig. 6), suggesting higher and poorly oxygenated waters.

The reconstructed Pann and Tann values (Fig. 6) at the start of the late Preboreal ~11.3–11.1 ka cal BP clearly show an increase in both rainfall and temperature, with maximum values ~11.11 ka cal BP coinciding with the abovementioned maximum percentage of birch, indicating wetter and warmer conditions. Later, Pann values show a downward trend until ~10.9 ka cal BP, while Tann progressively increases coinciding with a Pinus sylvestris/nigra peak, and therefore with a drier and warmer phase. This last phase is only briefly interrupted ~10.97 ka cal BP when Pann increases and Tann decreases. Here major sedimentary facies changes arise related to a less proximal alluvial-fan system (Turu et al., 2018). Subsequently, Pann values progressively increase until ~10.67 ka cal BP while Tann values decrease. Finally, both trends are reversed by increasing Tann and decreasing Pann values until ~10.6 ka cal BP, indicating a warmer and drier phase concomitant with the development of high-mountain pines, broom communities and cryophytic taxa (Fig. 6). A similar trend is documented in the NGRIP core (Rasmussen et al., 2008) during the late Preboreal ~11.3–10.6 ka cal BP by a progressive increase in δ¹⁸O values, although some minimum values are also documented by decreases in δ¹³C values that are contemporary with the Tann decreases discussed above (Fig. 6). In short, the great climatic instability demonstrated by both the pollen record and the paleoecological reconstruction of Navamuño during the Preboreal are in agreement with similar research carried out in northern Europe (Björck et al., 1997; Bos et al., 2007) and the Iberian Peninsula (Tarroso et al., 2016; Ivonen et al., 2019), as well as with most Iberian pollen records, especially those of the Mediterranean region (Carrión et al., 2010; Carrión, 2012) and particularly in inland areas where continentality played a fundamental role (Aranbarri et al., 2014), while those of the Eurosiberian region are more stable (Iriarte-Chiapusso et al., 2016).

6. Conclusions

High-resolution multiproxy analyses of the Navamuño record allow the reconstruction of vegetation and fire dynamics, climate and hydrological changes in the western ICS during the Late Glacial and the early Holocene (~15.6–10.6 ka cal BP). This core provides one of the few continental records of the entire Late Glacial-early Holocene periods in central Iberia showing the strongest vegetation changes yet published. Within this time frame, the Navamuño record exhibits a high temporal resolution in good agreement with the δ¹⁸O oscillations documented at the NGRIP core (Rasmussen et al., 2008). Most of the studied period has been characterized by a marked resilience of terrestrial vegetation, particularly of high-mountain pine and birch woodlands, as well as by generally gradual responses to millennial and centennial-scale climate fluctuations. The main vegetation and hydrological responses to global climate variability have been identified using palynological, macrocharcoal and geochemical indicators, enabling correlations with other continental Iberian and southern Mediterranean palaeoenvironmental sequences (Watts et al., 1996; Carrión et al., 2010; González-Samperez et al., 2010; Jalut et al., 2010; Carrión, 2012; Aranbarri et al., 2014; Iriarte-Chiapusso et al., 2016; Beaulieu et al., 2017; Sadori, 2018; Camuera et al., 2019). In general terms, ten phases occurred between ~15.6 and 10.6 ka cal BP as follows:

1) Regional cold and dry conditions are inferred for the Oldest Dryas stadial ~15.6–14.7 ka cal BP with high-mountain pine forests and cryophytic elements as main landscape elements. In addition, the sedimentary facies reveal the presence of a glaciolacustrine depositional environment of an amctic lake at the beginning of the deglaciation.

2) Moister and warmer conditions characterize the Bølling sub-interstadial ~14.7–14.0 ka cal BP, showing the expansion of birch woodlands. In addition, the well-developed hydrophyte pollen and NPPs assemblages and the sedimentary facies associations reveal high water levels and oligotrophic open water conditions. However, a cooling phase is documented ~14.2–14.0 ka cal BP, coinciding with the development of high-mountain pine woodlands during the Intra-Bølling cold period.

3) Subsequently, new cold and arid conditions characterize the study area during the Older Dryas sub-interstadial ~14.0–13.4 ka cal BP, as demonstrated by the replacement of birch woodlands by high-mountain pines, broom communities and a steppe-like landscape dominated by xerophilous, heliophilous and cryophilous grasslands. Geochemical and sedimentary proxies suggest deeper and poorly oxygenated mixed water conditions in the palaeolake.

4) Prevalence of dry conditions in response to the warmer Greenland Interstadial 1c ~13.4–13.1 ka cal BP, when high-mountain pine woodlands and hydro-hydrophytes spread locally. Hydrologically, this phase corresponds with an oxygenated and oligotrophic environment under lower lake levels.

5) New moister conditions are recorded during the colder Intra-Allerød cold period ~13.1–12.9 ka cal BP in coherence with the progressive replacement of pine-dominated woodlands by mixed pine-birch woodlands, showing the expansion of cryophytic and heliophilous/cryophilous elements. Local hydrological conditions suggest poorly oxygenated and eutrophic water and higher lake levels.

6) The progressive increase in humid and warm conditions during the Allerød sub-interstadial ~12.9–12.8 ka cal BP enabled a rapid forest recolonization with the expansion of high-mountain pine forests and an overall low fire activity. Low lake levels and better oxygenated waters persisted during this period.
7) The Younger Dryas stadial –12.6–11.7 ka cal BP worsening appears quite mitigated in the western ICS, showing a landscape dominated by open high-mountain pine forests and cold steppe grasslands with sparse riparian woodlands. Locally, sedimentary facies, palynological and geochemical proxies point to lower and better oxygenated waters and the development of a marshy environment. From a climatic point of view, this period is characterized by a biphasic structure including dry and warm conditions –12.6–12.0 ka cal BP and wetter and cooler ones –12.0–11.7 ka cal BP.

8) The early Preboreal –11.7–11.45 ka cal BP is expressed by a rapid temperature rise, which involved a rapid reforestation with high-mountain pines, brome communities and crawling junipers, and a dramatic reduction of riparian woodlands and open vegetation communities. The Navamuño depression was occupied by a shallow lagoon or more likely by a floodplain with stagnant shallow water. A great fire activity is attested at this time related to an increase in biomass availability.

9) The abrupt climate event –11.4 ka cal BP (Preboreal oscillation) is characterized by open mixed birch–pine woodlands and a dense shrub cover of brome, heather and crawling juniper –11.45–11.3 ka cal BP. The dry and cool climate favored the development of cryophytes and xerophytic taxa and increased fire activity, while the increase of reed mat and Zygmenataceae suggest a shallow basin environment with dominant ephemeral meso-eutrophic lake conditions.

10) The late Preboreal –11.3–10.6 ka cal BP is characterized by a highly variable climate, involving the antagonistic development of pine and birch forests, and the local expansion of deciduous oak woodlands. The great geomorphological change in the study area occurs in this period and can be correlated with the destabilization of the system after the 11.4 ka cal BP event. The Navamuño depression was transformed into a wide floodplain subject to the sedimentary flows of a meandriform system under conditions.

Acknowledgements

This work was funded by the projects LATESICE-CGL2016-78380-P and MED-REFUGIA-RTI2018-101714-B-I00 (Plan Nacional 1 + D + I, Ministry of Economy and Competitiveness, Spain), and by the ERC-Starting Grant Proposal No. 805478. R. Luelmo-Lautenschlaeger is funded by a Formación de Profesorado Universitario (FPU) grant (Ministry of Education, Culture, and Sports, Spain). We are grateful to the Dept. of Geography (Autonomous University of Barcelona, Spain) for its help with LOI analysis. Our sincere thanks to Dr. Guy Jafut for very constructive and helpful comments that improved the original draft.

References

